Abstract
The unprecedented prowess of measurement techniques provides a detailed, multi-scale look into the depths of living systems. Understanding these avalanches of high-dimensional data-by distilling underlying principles and mechanisms-necessitates dimensional reduction. We propose that living systems achieve exquisite dimensional reduction, originating from their capacity to learn, through evolution and phenotypic plasticity, the relevant aspects of a non-random, smooth physical reality. We explain how geometric insights by mathematicians allow one to identify these genuine hallmarks of life and distinguish them from universal properties of generic data sets. We illustrate these principles in a concrete example of protein evolution, suggesting a simple general recipe that can be applied to understand other biological systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.