Abstract

We provide a theoretical analysis by means of the nonperturbative functional renormalization group (NP-FRG) of the corrections to scaling in the critical behavior of the random-field Ising model (RFIM) near the dimension d_{DR}≈5.1 that separates a region where the renormalized theory at the fixed point is supersymmetric and critical scaling satisfies the d→d-2 dimensional reduction property (d>d_{DR}) from a region where both supersymmetry and dimensional reduction break down at criticality (d<d_{DR}). We show that the NP-FRG results are in very good agreement with recent large-scale lattice simulations of the RFIM in d=5 and we detail the consequences for the leading correction-to-scaling exponent of the peculiar boundary-layer mechanism by which the dimensional-reduction fixed point disappears and the dimensional-reduction-broken fixed point emerges in d_{DR}.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call