Abstract
The so-called Hitchin-Kobayashi correspondence, proved by Donaldson, Uhlenbeck and Yau, establishes that an indecomposable holomorphic vector bundle over a compact Kahler manifold admits a Hermitian-Einstein metric if and only if the bundle satisfies the Mumford-Takemoto stability condition. In this paper we consider a variant of this correspondence for G-equivariant vector bundles on the product of a compact Kahler manifold X by a flag manifold G=P, where G is a complex semisimple Lie group and P is a parabolic subgroup. The modification that we consider is determined by a filtration of the vector bundle which is naturally defined by the equivariance of the bundle. The study of invariant solutions to the modified Hermitian-Einstein equation over XG=P leads, via dimensional reduction techniques, to gauge-theoretic equations on X. These are equations for hermitian metrics on a set of holomorphic bundles on X linked by morphisms, defin- ing what we call a quiver bundle for a quiver with relations whose structure is entirely determined by the parabolic subgroup P. Similarly, the corresponding stability condition for the invariant filtration over XG=P gives rise to a stability condition for the quiver bundle on X , and hence to a Hitchin-Kobayashi correspondence. In the simplest case, when the flag manifold is the complex projective line, one recovers the theory of vortices, stable triples and stable chains, as studied by Bradlow, the authors, and others.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal für die reine und angewandte Mathematik (Crelles Journal)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.