Abstract
A very efficient large-order perturbation theory is formulated for the nuclear motion of a linear triatomic molecule. All coupling between vibration and rotation is included. To demonstrate the method, all of the experimentally observed rotational energies, with values of J almost up to 100, for the ground and first excited vibrational states of CO2 and for the ground vibrational states of N2O and of OCS are calculated. The perturbation expansions reported here are rapidly convergent. The perturbation parameter is D−1/2, where D is the dimensionality of space. Increasing D is qualitatively similar to increasing the angular momentum quantum number J. Therefore, this approach is especially suited for states with high rotational excitation. The computational cost of the method scales only in proportion to JNv5/3, where Nv is the size of the vibrational basis set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.