Abstract

I argue that string theory compactified on a Riemann surface crosses over at small volume to a higher dimensional background of supercritical string theory. Several concrete measures of the count of degrees of freedom of the theory yield the consistent result that at finite volume, the effective dimensionality is increased by an amount of order $2h/V$ for a surface of genus $h$ and volume $V$ in string units. This arises in part from an exponentially growing density of states of winding modes supported by the fundamental group, and passes an interesting test of modular invariance. Further evidence for a plethora of examples with the spacelike singularity replaced by a higher dimensional phase arises from the fact that the sigma model on a Riemann surface can be naturally completed by many gauged linear sigma models, whose RG flows approximate time evolution in the full string backgrounds arising from this in the limit of large dimensionality. In recent examples of spacelike singularity resolution by tachyon condensation, the singularity is ultimately replaced by a phase with all modes becoming heavy and decoupling. In the present case, the opposite behavior ensues: more light degrees of freedom arise in the small radius regime. We comment on the emerging zoology of cosmological singularities that results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.