Abstract

Music emotion recognition (MER) is a challenging field of studies that has been addressed in multiple disciplines such as cognitive science, physiology, psychology, musicology, and arts. In this paper, music emotions are modeled as a set of continuous variables composed of valence and arousal (VA) values based on the Valence-Arousal model. MER is formulated as a regression problem where 548 dimensions of music features were extracted and selected. A wide range of methods including multivariate adaptive regression spline, support vector regression (SVR), radial basis function, random forest regression (RFR), and regression neural networks are adopted to recognize music emotions. Experimental results show that these regression algorithms have led to good regression effect for MER. The optimal R2 statistics and VA values are 29.3% and 62.5%, respectively, which are obtained by the RFR and SVR algorithms in the relief feature space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.