Abstract
We present a dimensional reduction argument to derive the classification reduction of fermionic symmetry protected topological phases in the presence of interactions. The dimensional reduction proceeds by relating the topological character of a d-dimensional system to the number of zero-energy bound states localized at zero-dimensional topological defects present at its surface. This correspondence leads to a general condition for symmetry preserving interactions that render the system topologically trivial, and allows us to explicitly write a quartic interaction to this end. Our reduction shows that all phases with topological invariant smaller than n are topologically distinct, thereby reducing the noninteracting Z classification to Z_{n}.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.