Abstract

We investigate the dimensional crossover of scaling properties of avalanches (domain-wall jumps) in a single-interface model, used for the description of Barkhausen noise in disordered magnets. By varying the transverse aspect ratio A=L(y)/L(x) of simulated samples, the system dimensionality changes from two to three. We find that perturbing away from d=2 is a relevant field. The exponent tau characterizing the power-law scaling of avalanche distributions varies between 1.06(1) for d=2 and 1.275(15) for d=3, according to a crossover function f(x), x identical with (L-1x)(phi)/A, with phi=0.95(3). We discuss the possible relevance of our results to the interpretation of thin-film measurements of Barkhausen noise. We also study the probability distributions of interface roughness, sampled among successive equilibrium configurations in the Barkhausen noise regime. Attempts to fit our data to the class of universality distributions associated to 1/f(alpha) noise give alpha approximately 1-1.1 for d=2 and 3 (provided that suitable boundary conditions are used in the latter case).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.