Abstract

The combination of Atomic Diffusion Additive Manufacturing (ADAM) and traditional CNC machining allows manufacturers to leverage the advantages of both technologies in the production of functional metal parts. This study presents the methodological development of hybrid manufacturing for solid copper parts, initially produced using ADAM technology and subsequently machined using a 5-axis CNC system. The ADAM technology was dimensionally characterized by adapting and manufacturing the seven types of test artifacts standardized by ISO/ASTM 52902:2019. The results showed that slender geometries suffered warpage and detachment during sintering despite complying with the design guidelines. ADAM technology undersizes cylinders and oversizes circular holes and linear lengths. In terms of roughness, the lowest results were obtained for horizontal flat surfaces, while 15° inclined surfaces exhibited the highest roughness due to the stair-stepping effect. The dimensional deviation results for each type of geometry were used to determine the specific and global oversize factors necessary to compensate for major dimensional defects. This also involved generating appropriate over-thicknesses for subsequent CNC machining. The experimental validation of this process, conducted on a validation part, demonstrated final deviations lower than 0.5% with respect to the desired final part, affirming the feasibility of achieving copper parts with a high degree of dimensional accuracy through the hybridization of ADAM and CNC machining technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.