Abstract

Currently domestic tumble dryers are popularly used for drying garments; however, excessive drying and the inappropriate way of tumble agitation could waste energy and cause damage to or the dimensional change of garments. Shrinkage of wool fabrics during tumble drying causes a serious problem for wool garments. The current study investigated the shrinkage of untreated and Chlorine-Hercosett–finished wool fabrics at different drying times. Temperature of air in the tumble dryer, temperature of fabric, moisture content of fabric, and dimensional change at different drying times were measured. For the duration of the tumble drying, the rise of fabric temperature and the reduction of moisture content on the wool fabric were investigated to explore their relationship to the shrinkage of wool fabrics in the tumble-drying cycle. It was found that the tumble-drying process can be divided into different stages according to the temperature change trend of wool fabrics. The shrinkage mechanisms of the untreated and the treated fabrics were different. The dimensional change of untreated wool fabric was caused mainly by felting shrinkage during tumble drying. Chlorine-Hercosett–finished wool fabric can withstand the tumble-drying process without noticeable felting shrinkage due to the surface modification and resin coating of surface scales of wool fibers. The finding from the current research provides further understanding of the shrinkage behavior of wool fabrics during the tumble-drying process, leading to optimizing operational parameters at specific stages of a tumble-drying cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.