Abstract
Passive-dynamic ankle-foot orthoses (PD-AFOs) constitute a class of ankle braces that rely on material properties and physical features to establish functional characteristics such as bending or rotational stiffness. We have developed a novel framework that combines a fully parameterized PD-AFO computer-aided design (CAD) model and free-form fabrication to rapidly manufacture customized PD-AFOs. The three-dimensional locations of select anatomic landmarks serve to fit customize the PD-AFO CAD model. A virtual orthopedic alignment process and selection of discrete design parameter values further customize the orthosis, which is fabricated via selective laser sintering. CAD models were customized and full-scale orthoses were manufactured for two nondisabled subjects. The surface of one half-scale CAD model was marked with 3 mm hemispherical dimples, and four orthoses were manufactured in different build orientations and positions. Dimensional accuracy was determined by calculating discrepancies between corresponding CAD and fabricated orthoses interdimple distances. Subjective evaluations of the full-scale PD-AFOs following use in gait were positive. Dimension discrepancies were well under a 2 mm tolerance for the four half-scale orthoses. Mean foot plate, strut, and cuff component discrepancies were 0.31 +/- 0.28, 0.34 +/- 0.08, 0.52 +/- 0.39 mm, respectively, and 0.29 +/- 0.23 mm for the overall orthosis. Dimensional accuracy of the rapid customization and manufacturing framework was well within tolerances suggested in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Rehabilitation Research and Development
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.