Abstract
To better approximate nearly singular functions with meshless methods, we propose a data points redistribution method extended from the well-known one-dimensional equidistribution principle. With properly distributed data points, nearly singular functions can be well approximated by linear combinations of global radial basis functions. The proposed method is coupled with an adaptive trial subspace selection algorithm in order to reduce computational cost. In our numerical examples, clear exponential convergence (with respect to the numbers of data points) can be observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.