Abstract
<p style='text-indent:20px;'>An effective system of partial differential equations describing the heat and current flow through a thin organic light-emitting diode (OLED) mounted on a glass substrate is rigorously derived from a recently introduced fully three-dimensional <inline-formula><tex-math id="M1">\begin{document}$ p(x) $\end{document}</tex-math></inline-formula>-Laplace thermistor model. The OLED consists of several thin layers that scale differently with respect to the multiscale parameter <inline-formula><tex-math id="M2">\begin{document}$ \varepsilon&gt;0 $\end{document}</tex-math></inline-formula>, which is the ratio between the total thickness and the lateral extent of the OLED. Starting point of the derivation is a rescaled formulation of the current-flow equation in the OLED for the driving potential and the heat equation in OLED and glass substrate with Joule heat term concentrated in the OLED. Assuming physically motivated scalings in the electrical flux functions, uniform a priori bounds are derived for the solutions of the three-dimensional system which facilitates the extraction of converging subsequences with limits that are identified as solutions of a dimension reduced system. In the latter, the effective current-flow equation is given by two semilinear equations in the two-dimensional cross-sections of the electrodes and algebraic equations for the continuity of the electrical fluxes through the organic layers. The effective heat equation is formulated only in the glass substrate with Joule heat term on the part of the boundary where the OLED is mounted.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Discrete and Continuous Dynamical Systems - Series S
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.