Abstract
AbstractSolving the Fokker-Planck-Kolmogorov (FPK) equation is one of the most important and challenging problems in high-dimensional nonlinear stochastic dynamics, which is widely encountered in various science and engineering disciplines. To date, no method available is capable of dealing with systems of dimensions higher than eight. The present paper aims at tackling this problem in a different way, i.e., reducing the dimension of the FPK equation by constructing an equivalent probability flux. In the paper, two different treatments for multidimensional stochastic dynamical systems, the FPK equation and the probability density evolution method (PDEM), are outlined. Particularly, the FPK equation is revisited in a completely new way by constructing the probability fluxes based on the embedded dynamics mechanism and then invoking the principle of preservation of probability. The FPK equation is then marginalized to reduce the dimension, resulting in a flux-form equation involving unknown probability flux...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.