Abstract
This chapter addresses the problems in hyperspectral image classification by the methods of local manifold learning methods. A manifold is a nonlinear low dimensional subspace that is supported by data samples. Manifolds can be exploited in developing robust feature extraction and classification methods. The manifold coordinates derived from local manifold learning (LLE, LE) methods for multiple data sets. With a proper selection of parameters and a sufficient number of features, the manifold learning methods using the k-nearest neighborhood classification results produced an efficient and accurate data representation that yields higher classification accuracies than linear dimension reduction (PCA) methods for hyperspectral image.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.