Abstract

A renewed methodology for simulating two-spatial dimensional stochastic wind field is addressed in the present study. First, the concept of cross wavenumber spectral density (WSD) function is defined on the basis of power spectral density (PSD) function and spatial coherence function to characterize the spatial variability of the stochastic wind field in the two-spatial dimensions. Then, the hybrid approach of spectral representation and wavenumber spectral representation and that of proper orthogonal decomposition and wavenumber spectral representation are respectively derived from the Cholesky decomposition and eigen decomposition of the constructed WSD matrices. Immediately following that, the uniform hybrid expression of spectral decomposition and wavenumber spectral representation is obtained, which integrates the advantages of both the discrete and continuous methods of one-spatial dimensional stochastic field, allowing for reflecting the spatial characteristics of large-scale structures. Moreover, the dimension reduction model for two-spatial dimensional stochastic wind field is established via adopting random functions correlating the high-dimensional orthogonal random variables with merely 3 elementary random variables, such that this explicitly describes the probability information of stochastic wind field in probability density level. Finally, the numerical investigations of the two-spatial dimensional stochastic wind fields respectively acting on a long-span suspension bridge and a super high-rise building are implemented embedded in the FFT algorithm. The validity and engineering applicability of the proposed method are thus fully verified, providing a potentially effective approach for refined wind-resistance dynamic reliability analysis of large-scale complex engineering structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call