Abstract
The communication tower is a lifeline engineering that ensures the normal operation of wireless communication systems. Extreme wind disasters are inevitable while it is in service. Two dimension-reduction (DR) probabilistic representations based on proper orthogonal decomposition (POD) and wavenumber spectral representation (WSR), say DR-POD and DR-WSR, were thus proposed in this study. In order to determine the least representative sample size that satisfies the engineering accuracy requirements, the simulation error and simulation duration of 10 simulation points distributed along the height direction of the communication tower under different representative sample numbers were compared. Furthermore, for the fluctuating wind field with different numbers of simulation points distributed along the height of the communication tower, the simulation accuracy as well as efficiency of the DR-POD and the DR-WSR were compared. Finally, a high-rise communication tower structure’s wind-induced dynamic response study and wind-resistance reliability analysis were performed utilizing an alliance of the probability density evolution method (PDEM) and two DR probabilistic models, taking 10 load points into account. The structural dynamic analysis illustrates that the reliability of the communication tower structure and the wind-induced dynamic response allying the two DR probabilistic models with the PDEM have outstanding consistency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.