Abstract
To obtain M-estimators of a response variable when the data are missing at random, we can construct three bias-corrected nonparametric estimating equations based on inverse probability weighting, mean imputation, and augmented inverse probability weighting approaches. However, when the dimension of covariate is not low, the estimation efficiency will be affected due to the curse of dimensionality. To address this issue, we propose a two-stage estimation procedure by using the dimension-reduced kernel estimators in conjunction with bias-corrected estimating equations. We show that the resulting three kernel-assisted estimating equations yield asymptotically equivalent M-estimators that achieve the desirable properties. The finite-sample performance of the proposed estimators for response mean, distribution function and quantile is studied through simulation, and an application to HIV-CD4 data set is also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annals of the Institute of Statistical Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.