Abstract

SummaryWe introduce a general formulation for dimension reduction and coefficient estimation in the multivariate linear model. We argue that many of the existing methods that are commonly used in practice can be formulated in this framework and have various restrictions. We continue to propose a new method that is more flexible and more generally applicable. The method proposed can be formulated as a novel penalized least squares estimate. The penalty that we employ is the coefficient matrix's Ky Fan norm. Such a penalty encourages the sparsity among singular values and at the same time gives shrinkage coefficient estimates and thus conducts dimension reduction and coefficient estimation simultaneously in the multivariate linear model. We also propose a generalized cross-validation type of criterion for the selection of the tuning parameter in the penalized least squares. Simulations and an application in financial econometrics demonstrate competitive performance of the new method. An extension to the non-parametric factor model is also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.