Abstract

Dimension prints were developed in 1988 to distinguish between different fractal sets in Euclidean spaces having the same Hausdorff dimension but with very different geometric characteristics. In this paper we compute the dimension prints of some fractal sets, including generalized Cantor sets on the unit circle S1 in ℝ2 and the graphs of generalized Lebesgue functions, also in ℝ2. In this second case we show that the dimension print for the graphs of the Lebesgue functions can approach the maximal dimension print of a set of dimension 1. We study the dimension prints of Cartesian products of linear Borel sets and obtain the exact dimension print when each linear set has positive measure in its dimension and the dimension of the Cartesian product is the sum of the dimensions of the factors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.