Abstract
For a class of partially observed diffusions, conditions are given for the map from the initial condition of the signal to filtering distribution to be contractive with respect to Wasserstein distances, with rate which does not necessarily depend on the dimension of the state-space. The main assumptions are that the signal has affine drift and constant diffusion coefficient and that the likelihood functions are log-concave. Ergodic and nonergodic signals are handled in a single framework. Examples include linear-Gaussian, stochastic volatility, neural spike-train and dynamic generalized linear models. For these examples filter stability can be established without any assumptions on the observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.