Abstract

The set of badly approximable m × n matrices is known to have Hausdorff dimension mn. Each such matrix comes with its own approximation constant c, and one can ask for the dimension of the set of badly approximable matrices with approximation constant greater than or equal to some fixed c. In the one-dimensional case, a very precise answer to this question is known. In this note, we obtain upper and lower bounds in higher dimensions. The lower bounds are established via the technique of Schmidt games, while for the upper bound we use homogeneous dynamics methods, namely exponential mixing of flows on the space of lattices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.