Abstract
For a C1+α diffeomorphism f preserving a hyperbolic ergodic SRB measure μ, Katok's remarkable results assert that μ can be approximated by a sequence of hyperbolic sets {Λn}n≥1. In this paper, we prove that the Hausdorff dimension for Λn on the unstable manifold tends to the dimension of the unstable manifold. Furthermore, if the stable direction is one dimension, then the Hausdorff dimension of μ can be approximated by the Hausdorff dimension of Λn.To establish these results, we utilize the u-Gibbs property of the conditional measure of the equilibrium measure of −ψs(⋅,fn) and the properties of the uniformly hyperbolic dynamical systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.