Abstract

Many known results on finite von Neumann algebras are generalized, by purely algebraic proofs, to a certain class C of finite Baer *-rings. The results in this paper can also be viewed as a study of the properties of Baer *-rings in the class C . First, we show that a finitely generated module over a ring from the class C splits as a direct sum of a finitely generated projective module and a certain torsion module. Then, we define the dimension of any module over a ring from C and prove that this dimension has all the nice properties of the dimension studied in [W. Lück, J. Reine Angew. Math. 495 (1998) 135–162] for finite von Neumann algebras. This dimension defines a torsion theory that we prove to be equal to the Goldie and Lambek torsion theories. Moreover, every finitely generated module splits in this torsion theory. If R is a ring in C , we can embed it in a canonical way into a regular ring Q also in C . We show that K 0 ( R ) is isomorphic to K 0 ( Q ) by producing an explicit isomorphism and its inverse of monoids Proj ( P ) → Proj ( Q ) that extends to the isomorphism of K 0 ( R ) and K 0 ( Q ) .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.