Abstract

Lakes in the McMurdo Dry Valleys of Antarctica are characterized by a permanent ice cover and little or no anthropogenic influence. Although bacterial cultures have been obtained from these habitats, recent culture-independent studies indicate that the most abundant microbes in these systems are not yet cultivated. By using dilution-to-extinction cultivation methods with sterilized and nutrient-amended lake water as media, we isolated 148 chemotrophic psychrotolerant bacterial cultures from fresh surface water of Lake Fryxell and the east lobe of Lake Bonney and the hypersaline, suboxic bottom water from the west lobes of Lake Bonney. Screening of the 16S ribosomal ribonucleic acid (rRNA) genes of the cultures by restriction fragment length polymorphism (RFLP) yielded 57 putatively pure psychrotolerant, slow growing cultures grouped into 18 clusters. The sequencing of 16S rRNA genes of randomly selected representatives of each RFLP cluster revealed that the corresponding isolates belong to the Alphaproteobacteria (six RFLP patterns), Betaproteobacteria (six RFLP patterns), Bacteroidetes (four RFLP patterns), and Actinobacteria (two RFLP patterns). Phylogenetic analysis of the sequences showed that the vast majority of the isolates were not closely related to previously described species. Thirteen of 18 RFLP patterns shared a 16S ribosomal deoxyribonucleic acid sequence similarity of 97% or less with the closest described species, and four isolates had a sequence similarity of 93% or less with the nearest described species. Phylogenetic analysis showed that these sequences were representatives of deeply branching organisms in the respective phylum. A comparison of the isolates with 16S rRNA clone libraries prepared from the same environments showed substantial overlap, indicating that dilution-to-extinction culturing in natural lake water media can help isolate some of the most abundant organisms in these perennially ice-covered lakes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.