Abstract
TX-100 molecular hydrogels exhibited re-entrant melt-gel-sol phase transition driven solely by dilution, which sequentially altered the self-assembly of the micellar formations and their population was investigated through the monitoring of the physical parameters namely, solution viscosity, particle size histogram, ergodicity, and gel rigidity modulus. This phenomenon was noticed at 20°C in the TX-100 concentration region of 0.2 to 1.2 M much above the critical micellar concentration of 0.22 mM. The particle size histograms revealed the presence of spherical micelles (size »3 nm) in the solution ([TX-100] < 0.5 M) which formed entangled wormlike cylindrical micelles (apparent hydrodynamic radius » 50 nm) when (0.5 M< [TX-100] < 0.9 M) giving rise to a gel-like structure. Further increase in the TX-100 concentration increased the propensity of these wormlike cylindrical micelles that got randomly distributed creating a dense melt phase. Interestingly, we observed transition solely driven by dilution which defined complete re-entrant behavior at room temperature. These molecular gels could be created by dilution of the melt or concentration of the sol unlike in the polymer gels. Remarkably, this hitherto little known unique phenomenon was exhibited by a simple system of non-ionic surfactant solution. Thus, we have a hydration reversible gel at our disposal which has a special place in soft matter arena.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.