Abstract

Fusion welds were prepared between a superaustenitic stainless steel, (the AL-6XN alloy) and two Ni-based filler metals (IN625 and IN622) using the gas-tungsten-arc welding (GTAW) process. Fusionzone compositions over the full range of dilution levels (0 to 100 pct) were produced by varying the independent welding parameters of arc power and volumetric filler-metal feed rate. Microstructural characterization of the welds was conducted via light optical microscopy, with quantitative chemical information obtained through electron-probe microanalysis (EPMA). The dilution level of each weld was determined from the EPMA data as well as through geometric measurements of the weld cross-sectional areas. The dilution level was observed to decrease with increasing filler-metal feed rate and decreasing arc power. These effects are quantitatively interpreted based on a previously proposed processing model. The model is used to demonstrate that, in terms of welding parameters, the dilution level can be correlated exclusively to the ratio of the volumetric filler-metal feed rate (Vfm) to arc power (VI), i.e., the individual values of Vfm and VI are not important in controlling the dilution and resultant weld-metal composition. Good agreement is obtained between experimental and calculated dilution values using the model. It is also demonstrated that the melting enthalpies of the filler metal and substrate have only a minor influence on dilution at dilution levels in the range from 40 to 100 pct. This knowledge facilitates estimates of dilution levels in this range when the substrate and fillermetal thermal properties are not accurately known. The results presented from this study provide guidelines for controlling the weld-metal composition in these fusion-zone combinations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call