Abstract

The evaluation results of the metrological performance of a dilution and a permeation standard for generating SI-traceable calibration gas mixtures of NO, SO2 and NO2 for ambient air measurements are presented. The composition of the in situ produced reference gas mixtures is calculated from the instantaneous values of the input quantities of the generating standards. In a measurement comparison, the calibration and measurement capabilities of five laboratories were evaluated for the three analytes at limiting amount of substance fractions in ambient air between 20 and 150 nmol mol−1. For the upper generated reference values the target relative uncertainties of ⩽2% (for NO and SO2) and ⩽3% (for NO2) for evaluating the laboratory results were fulfilled in 12 out of 13 cases. For the analytical results seven out of nine laboratories met the criteria for the upper values for NO and NO2, for SO2 it was one out of four. From the negative degrees of equivalence of all NO2 comparison results it was supposed that the permeation rate of NO2 through the FEP polymer membrane of the permeator was different in air and N2. Subsequent precision permeation measurements with various carrier gases revealed that the permeation rate of NO2 was ≈0.8% lower in synthetic air compared to N2. With the corrected NO2 reference values for air the degrees of equivalence of the laboratory results were improved and closer to be symmetrically distributed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call