Abstract

We propose a new mechanism to suppress the axion isocurvature perturbation, while producing the right amount of axion dark matter, within the framework of supersymmetric axion models with the axion scale induced by supersymmetry breaking. The mechanism involves an intermediate phase transition to generate the Higgs μ-parameter, before which the weak scale is comparable to the axion scale and the resulting stronger QCD yields an axion mass heavier than the Hubble scale over a certain period. Combined with that the Hubble-induced axion scale during the primordial inflation is well above the intermediate axion scale at present, the stronger QCD in the early Universe suppresses the axion fluctuation to be small enough even when the inflationary Hubble scale saturates the current upper bound, while generating an axion misalignment angle of order unity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.