Abstract

Ionogels, which are being considered as quasi-solid electrolytes for energy-storage devices, exhibited technical superiority in terms of nonflammability, negligible vapor pressure, remarkable thermostability, high ionic conductivity, and broad electrochemical stability window. However, their applications in lithium metal batteries (LMBs) have been hindered by several issues: poor compatibility with Li-metal anodes and high-voltage cathodes, high viscosity, and inadequate wettability. Little attention has been paid to ionogel-based low-concentration electrolytes, despite their potential advantages in terms of Li+ mobility, viscosity, electrode wettability, and cost. Here, we demonstrate the surprising capabilities of localized high-concentration ionogel (LHCI) and dilutedly localized high-concentration ionogel (DLHCI) electrolytes, utilizing the non-solvating fluorinated ether 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether, to realize high-voltage quasi-solid-state lithium metal batteries (QSLMBs). Notably, the DLHCI electrolyte not only delivers superior ionic conductivity of 3.93 × 10−3 S cm−1 but also provides a high Li plating/stripping Coulombic efficiency exceeding 99%. Moreover, it significantly enhances anodic stability when paired with 4.4 V LiNi0.8Co0.1Mn0.1O2 (NCM811) and 4.8 V LiNi0.5Mn1.5O4 (LNMO). Consequently, substantial improvement in cycling performance of QSLMBs has been realized with the DLHCI electrolyte.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call