Abstract

Light transmission and Faraday rotation spectra measured at the temperature of 2 K were compared for silicon carbide single crystals of 4H polytype (4H-SiC), implanted with 3.8 × 1016 cm−2 of Mn ions at the beam energy of 190 keV, and a control 4H-SiC single crystal sample, which was not implanted. Mn ion implantation led to the creation of a Mn-doped surface layer with the average Mn concentration of 1021 cm−3 and a thickness of approximately 0.2 μm. Transmission of light through the implanted crystal changed only slightly in comparison with the control sample, which however, corresponded to a relatively strong attenuation in the implanted layer. This was interpreted as a result of scattering, which emerges in the surface layer due to optical nonuniformities, created by the high energy ion irradiation. The presence of a thin Mn-ion-containing surface layer led, despite its small thickness, to noticeable changes in the sample Faraday rotation spectra. The estimated values of the Verdet constant for this l...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call