Abstract

AbstractMW fractions of poly(dimethyldiallylammonium chloride) (PDMDAAC) were prepared by preparative size‐exclusion chromatography and characterized by static and dynamic light scattering, viscometry, size‐exclusion chromatography, and electrophoretic light scattering, in 0.50M NaCl solution. The behavior of fractions with MW < 2 × 105 was as expected for a strong polyelectrolyte in a good solvent, with a Mark‐Houwink exponent of ca. 0.8, and MW‐dependencies of the hydrodynamic radius and the radius of gyration of corresponding magnitude. At higher MW, curvature appears in the MW‐dependencies, which can be best explained by the presence of branching. While this notably lowers the intrinsic viscosity at high MW, the electrophoretic mobility is unchanged regardless of molar mass. Thus, the branched polymers display the electrophoretic free‐draining behavior characteristic of linear polyelectrolytes. ©1995 John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.