Abstract

Dilute nitride materials have been used in a variety of III-V photonic devices, but have not been significantly explored in photoelectrochemical applications. This work focuses on using dilute phosphide nitride materials of the form (Al,In)P<sub>1-x</sub>N<sub>x</sub> as photocathodes for the generation of hydrogen fuel from solar energy. Heteroepitaxial MOCVD growth of AlPN thin films on GaP yields high quality material with a direct bandgap energy of 2.218 eV. Aligned epitaxial growth of InP and GaP nanowires on InP and Si substrates, respectively, provides a template for designing nanostructured photocathodes over a large area. Electrochemical testing of a AlPN/GaP heterostructure electrode yields up to a sixfold increase in photocurrent enhancement under blue light illumination as compared to a GaP electrode. Additionally, the AlPN/GaP electrodes exhibit no degradation in performance after galvanostatic biasing over time. These results show that (Al,In)P<sub>1-x</sub>N<sub>x</sub> is a promising materials system for use in nanoscale photocathode structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call