Abstract
Molecular spins are considered as the quantum hardware to build hybrid quantum processors in which coupling to superconducting devices would provide the means to implement the necessary coherent manipulations. As an alternative to large magnetically-dilute crystals or concentrated nano-scale deposits of paramagnetic molecules that have been studied so far, the use of pre-formed sub-micronic spherical particles of a doped Gd@Y hydroxycarbonate is evaluated here. Particles with an adjustable number of spin carriers are prepared through the control of both particle size and doping. Bulk magnetic properties and continuous wave and time-domain-EPR spectroscopy show that the Gd spins in these particles are potential qubits with robust quantum coherence. Monolayers of densely-packed particles are then formed interfacially and transferred successfully to the surface of Nb superconducting resonators. Alternatively, these particles are disposed at controlled localizations as isolated groups of a few particles through Dip-Pen Nanolithography using colloidal organic dispersions as ink. Altogether, this study offers new material and methodologies relevant to the development of viable hybrid quantum processors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.