Abstract

Developing aqueous electrolyte with wide electrochemical stability window (ESW) is one of the key technologies to boosting the energy density of aqueous electrochemical double-layer capacitors (EDLCs). However, expanding the ESW using super-concentrated electrolytes comes at the expense of cost, ionic conductivity and the mass density of the device. Herein, we selected a cost-effective and environmentally friendly molecular crowding agent, polyethylene glycol dimethyl ether (PEGDME-250), as the electrolyte additive designed to achieve high ESW at low salt concentrations. First, PEGDME can reduces the activity of water and increases the ESW of the electrolyte by forming hydrogen bonds with free water molecule. In addition, PEGDME does not have the interaction between terminal groups compared to conventional polyethylene glycols (PEG), which helps to reduce the viscosity and improve the ionic conductivity of the electrolyte. By adjusting the composition of the electrolyte, the optimal electrolyte with a high ESW of 2.96 V was achieved with the formula of 3 m NaClO4-25 % H2O-75 % PEGDME. The EDLCs assembled with this diluted aqueous electrolyte and YP-50 F electrodes presents a high operational voltage window of 2.4 V and outstanding cycle stability (>10000 cycles), and maintains excellent rate performance in a temperature range of −10–35 ℃.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.