Abstract
Calcium antagonists (CAs) are widely prescribed for patients with cardiovascular diseases. CAs have been reported to inhibit smooth muscle cell (SMC) proliferation in addition to their effects on vascular tone. To determine whether CAs potentially affect vascular remodeling, we measured the expression of matrix-degrading enzymes in growth factor-stimulated SMC. Human cultured SMC were stimulated with 10 ng/ml of platelet-derived growth factor (PDGF)-BB with or without a calcium antagonist, diltiazem. In the cell counting assay, diltiazem (10-5 M) alone had no effect on the proliferation of quiescent SMC, however 10-6-10-5 M of diltiazem dose-dependently inhibited PDGF-stimulated SMC proliferation. The inhibitory effects of diltiazem on SMC proliferation were further confirmed by a 5-bromo-2'-deoxyuridine (BrdU) incorporation assay and flow cytometry. In Western blotting, matrix metalloproteinase (MMP)-1 (tissue collagenase) but not MMP-2 (72-kDa gelatinase) expression was upregulated by PDGF and phorbol ester (TPA), which were reduced by diltiazem in a dose-dependent manner. The downregulation of MMP-1 expression was consistent with the reduction of collagenolytic activity measured by a FITC-conjugated type I collagen breakdown assay. PDGF-stimulated c-Jun/AP-1 expression, a major transcriptional factor for MMP-1, was not affected by diltiazem. In contrast, intracellular calcium ions measured with a fluorometric assay of Fluo-3AM-loaded cells revealed that the PDGF-stimulated increase in the intracellular calcium content was dose-dependently reduced by diltiazem. Our data suggest that diltiazem inhibits not only proliferation but also MMP-1 expression and collagenolytic activity in PDGF-stimulated SMC. The administration of CAs potentially influences the process of vascular remodeling, and this possibility should be further verified in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.