Abstract

To investigate dilator effects of endothelins (ETs) on the pulmonary circulation and possible changes induced by chronic hypoxia, we examined vascular responses to ET-1 and ET-3 as well as ET binding to receptor subtypes ETA and ETB in the lungs from rats exposed to either room air (controls), hypoxia (10% O2) for 3 wk (3 WH), or 3 WH followed by recovery to room air (3 WH+R). In controls, both ETA and ETB receptor binding was present in smooth muscle of airways and vessels. Infusion of ET-1 or ET-3 (3-100 pM) to isolated perfused lungs preconstricted by U-46619 produced dose-dependent vasodilation with a greater potency of ET-3 (P < 0.01). The vasodilator responses to ET-1 and ET-3 were potentiated by the cyclooxygenase blocker meclofenamate (3 x 10(-6) M) or by the thromboxane synthetase inhibitor R-68070. In meclofenamate-treated lungs, the vasodilator responses to ET-1 and ET-3 remained unaffected by the inhibitor of nitric oxide synthesis, NG-monomethyl-L-arginine (5 x 10(-4) M) or by the guanylate cyclase inhibitor, methylene blue (10(-4) M). Conversely, the K+ channel blockers glibenclamide (10(-4) M) and tetraethylammonium (10(-4) M) attenuated the vasodilator responses to both ET-1 and ET-3. The selective ETA receptor antagonist BQ-123 did not alter ET-induced vasodilation, whereas it attenuated ET-induced vasoconstriction. Vasodilation to both ET-1 and ET-3 was abolished in lungs from 3 WH rats (P < 0.01) but was fully restored in lungs from 3 WH+R rats. Pulmonary vasodilation induced by the K+ channel opener pinacidil, which was suppressed by glibenclamide, did not differ between controls and 3 WH rat lungs. We found no change in ETA and ETB receptor binding from pulmonary vessels in H rat lungs compared with controls. In conclusion, endothelin-induced pulmonary vasodilation which may involve activation of K+ channels is abolished during chronic hypoxia. This abolition does not appear to be related to alterations in ET-receptor subtypes or to unresponsiveness of K+ channels in the pulmonary circulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.