Abstract

The CGHS two-dimensional dilaton gravity model is generalized to include a ghost Klein-Gordon field, i.e. with negative gravitational coupling. This exotic radiation supports the existence of static traversible wormhole solutions, analogous to Morris-Thorne wormholes. Since the field equations are explicitly integrable, concrete examples can be given of various dynamic wormhole processes, as follows. (i) Static wormholes are constructed by irradiating an initially static black hole with the ghost field. (ii) The operation of a wormhole to transport matter or radiation between the two universes is described, including the back-reaction on the wormhole, which is found to exhibit a type of neutral stability. (iii) It is shown how to maintain an operating wormhole in a static state, or return it to its original state, by turning up the ghost field. (iv) If the ghost field is turned off, either instantaneously or gradually, the wormhole collapses into a black hole.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.