Abstract

Al2O3 and ZrO2 monoliths as well as layered Al2O3/ZrO2 composites with a varying layer thickness ratio were prepared by electrophoretic deposition. The sintering shrinkage of these materials in the transversal (perpendicular to the layers, i.e. in the direction of deposition) as well as in the longitudinal (parallel with layers interfaces) direction were monitored using high-temperature dilatometry. The sintering of layered composites exhibited anisotropic behaviour. The detailed study revealed that sintering shrinkage in the longitudinal direction was governed by alumina (material with a higher sintering temperature), whilst in the transversal direction it was accelerated by the directional sintering of zirconia layers. For interpretation of such anisotropic sintering kinetics, the Master Shrinkage Curve model was developed and applied. Crack propagation through laminates with a different alumina/zirconia thickness ratio was described with the help of scanning electron microscopy and confocal laser microscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call