Abstract

The interaction of the protein δ-lysin from Staphylococcus aureus with model membrane of dipalmitol-sn-glycero-3-phosphocholine has been studied by the method of temperature scanning densitometry and high precision differential scanning calorimetry. The studies were performed in the range of low relative protein concentrations (between 10−4 and 3×10−2 moles δ-lysin per mole phospholipid) in order to observe those effects which may be relevant to the high efficiency of membranolysis. δ-lysin was found to have strong effects on the main transition as well as on the pretransition, i.e., significant reduction of the transition volume and transition enthalpy and complete abolition of the pretransition. The temperature of the main transition was nearly unaffected in this concentration range. These effects can be interpreted as long-range structural changes in the lipid bilayers caused by the protein and are discussed in terms of a cooperative cluster model. The results are in many respects qualitatively similar to those observed earlier with the bee venom protein melittin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.