Abstract

Abstract Let $q = e^{i \theta } \in \mathbb{T}$ (where $\theta \in \mathbb{R}$), and let $u,v$ be $q$-commuting unitaries, that is, $u$ and $v$ are unitaries such that $vu = quv$. In this paper, we find the optimal constant $c = c_{\theta }$ such that $u,v$ can be dilated to a pair of operators $c U, c V$, where $U$ and $V$ are commuting unitaries. We show that $$\begin{equation*} c_{\theta} = \frac{4}{\|u_{\theta}+u_{\theta}^*+v_{\theta}+v_{\theta}^*\|}, \end{equation*}$$where $u_{\theta }, v_{\theta }$ are the universal $q$-commuting pair of unitaries, and we give numerical estimates for the above quantity. In the course of our proof, we also consider dilating $q$-commuting unitaries to scalar multiples of $q^{\prime}$-commuting unitaries. The techniques that we develop allow us to give new and simple “dilation theoretic” proofs of well-known results regarding the continuity of the field of rotations algebras. In particular, for the so-called “almost Mathieu operator” $h_{\theta } = u_{\theta }+u_{\theta }^*+v_{\theta }+v_{\theta }^*$, we recover the fact that the norm $\|h_{\theta }\|$ is a Lipschitz continuous function of $\theta $, as well as the result that the spectrum $\sigma (h_{\theta })$ is a $\frac{1}{2}$-Hölder continuous function in $\theta $ with respect to the Hausdorff metric. In fact, we obtain this Hölder continuity of the spectrum for every self-adjoint *-polynomial $p(u_{\theta },v_{\theta })$, which in turn endows the rotation algebras with the natural structure of a continuous field of C*-algebras.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call