Abstract

Hydroxyl sulfobetaines with hexadecyl-, octadecyl-hydrophobic chain and an industrial product hydroxyl sulfobetaine were synthesized from analytical-grade and industrial-grade tertiary amine, respectively. The dilational properties and surface tension of the three surfactants at the water-air interface were investigated by drop shape analysis and ring method. The influences of oscillating frequency and bulk concentration on dilational properties were explored. The experimental results show that the dilational module of octadecyl-hydroxyl sulfobetaine was higher than hexadecyl hydroxyl sulfobetaine and the dilational elastic component of the three surfactants were higher than dilational viscous component. Furthermore, the dilational elastic component of mixed surfactant system shows two maxima in a lower concentration than that of single surfactant system. As a result, the surface tension of mixed surfactant system reaches to minimum value in a lower concentration compared with single surfactant system. The simulation results show that the hydrophobic chains in the mixed betaine solution were more curled than in single-component betaine solution ascribed to stronger interaction among different hydrophobic chains, resulting to a more compact interfacial film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.