Abstract
In recent years, deep learning-based classification methods for hyperspectral images (HSIs) have gained widespread popularity in fields such as agriculture, environmental monitoring, and geological exploration. This is owing to their ability to automatically extract features and deliver outstanding performance. This study provides a new Dilated Spectral–Spatial Gaussian Transformer Net (DSSGT) model. The DSSGT model incorporates dilated convolutions as shallow feature extraction units, which allows for an expanded receptive field while maintaining computational efficiency. We integrated transformer architecture to effectively capture feature relationships and generate deep fusion features, thereby enhancing classification accuracy. We used consecutive dilated convolutional layers to extract joint low-level spectral–spatial features. We then introduced Gaussian Weighted Pixel Embedding blocks, which leverage Gaussian weight matrices to transform the joint features into pixel-level vectors. By combining the features of each pixel with its neighbouring pixels, we obtained pixel-level representations that are more expressive and context-aware. The transformed vector matrix was fed into the transformer encoder module, enabling the capture of global dependencies within the input data and generating higher-level fusion features with improved expressiveness and discriminability. We evaluated the proposed DSSGT model using five hyperspectral image datasets through comparative experiments. Our results demonstrate the superior performance of our approach compared to those of current state-of-the-art methods, providing compelling evidence of the DSSGT model’s effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.