Abstract
Alterations in length-dependent activation (LDA) may constitute a mechanism by which cardiomyopathy mutations lead to deleterious phenotypes and compromised heart function, because LDA underlies the molecular basis by which the heart tunes myocardial force production on a beat-to-beat basis (Frank-Starling mechanism). In this study, we investigated the effect of DCM-linked mutation (R173W) in human cardiac troponin T (TnT) on myofilament LDA. R173W mutation is associated with left ventricular dilatation and systolic dysfunction and is found in multiple families. R173W mutation is in the central region (residues 80-180) of TnT, which is known to be important for myofilament cooperativity and cross-bridge (XB) recruitment. Steady-state and dynamic contractile parameters were measured in detergent-skinned guinea pig left ventricular muscle fibers reconstituted with recombinant guinea pig wild-type TnT (TnTWT) or mutant TnT (TnTR174W; guinea pig analog of human R173W mutation) at two different sarcomere lengths (SL): short (1.9 µm) and long (2.3 µm). TnTR174W decreased pCa50 (-log [Ca2+]free required for half-maximal activation) to a greater extent at long than at short SL; for example, pCa50 decreased by 0.12 pCa units at long SL and by 0.06 pCa units at short SL. Differential changes in pCa50 at short and long SL attenuated the SL-dependent increase in myofilament Ca2+ sensitivity (ΔpCa50) in TnTR174W fibers; ΔpCa50 was 0.10 units in TnTWT fibers but only 0.04 units in TnTR174W fibers. Furthermore, TnTR174W blunted the SL-dependent increase in the magnitude of XB recruitment. Our observations suggest that the R173W mutation in human cardiac TnT may impair Frank-Starling mechanism.NEW & NOTEWORTHY This work characterizes the effect of dilated cardiomyopathy mutation in cardiac troponin T (TnTR174W) on myofilament length-dependent activation. TnTR174W attenuates the length-dependent increase in cross-bridge recruitment and myofilament Ca2+ sensitivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American journal of physiology. Heart and circulatory physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.