Abstract

Mutations of mitochondrial DNA (mtDNA) cause several well-recognized human genetic syndromes with deficient oxidative phosphorylation and may also have a role in ageing and acquired diseases of old age. We report here that hallmarks of mtDNA mutation disorders can be reproduced in the mouse using a conditional mutation strategy to manipulate the expression of the gene encoding mitochondrial transcription factor A (Tfam, previously named mtTFA), which regulates transcription and replication of mtDNA. Using a loxP-flanked Tfam allele (TfamloxP) in combination with a cre-recombinase transgene under control of the muscle creatinine kinase promoter, we have disrupted Tfam in heart and muscle. Mutant animals develop a mosaic cardiac-specific progressive respiratory chain deficiency, dilated cardiomyopathy, atrioventricular heart conduction blocks and die at 2-4 weeks of age. This animal model reproduces biochemical, morphological and physiological features of the dilated cardiomyopathy of Kearns-Sayre syndrome. Furthermore, our findings provide genetic evidence that the respiratory chain is critical for normal heart function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.