Abstract

HypothesisThe surface dilatational and shear moduli of surfactant and protein interfacial layers can be derived from surface pressures measured with a Wilhelmy plate parallel, ΔΠpar and perpendicular ΔΠperp to the barriers in a Langmuir trough. ExperimentalApplying area oscillations, A0+ ΔAeiωt, in a rectangular Langmuir trough induces changes in surface pressure, ΔΠpar and ΔΠperp for monolayers of soluble palmitoyl-lysophosphatidylcholine (LysoPC), insoluble dipalmitoylphosphatidylcholine (DPPC), and the protein β-lactoglobulin to evaluate Es∗+Gs∗=A0ΔΠparΔA and Es∗-Gs∗=A0ΔΠperpΔA. Gs∗ was independently measured with a double-wall ring apparatus (DWR) and Es∗ by area oscillations of hemispherical bubbles in a capillary pressure microtensiometer (CPM) and the results were compared to the trough measurements. FindingsFor LysoPC and DPPC, A0ΔΠparΔA≅A0ΔΠperpΔA meaning Es∗≫Gs∗ and Es∗≅A0ΔΠparΔA≅A0ΔΠperpΔA. Trough values for Es∗ were quantitatively similar to CPM when corrected for interfacial curvature. DWR showed G∗ was 4 orders of magnitude smaller than Es∗ for both LysoPC and DPPC. For β-lactoglobulin films, A0ΔΠparΔA>A0ΔΠperpΔA and Es∗ and Gs∗ were in qualitative agreement with independent CPM and DWR measurements. For β-lactoglobulin, both Es∗ and Gs∗ varied with film age and history on the trough, suggesting the evolution of the protein structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call