Abstract

The dilatancy equation ignores the noncoaxiality of granular soil for the coaxial assumption of the direction of the stress and strain rate in conventional plastic potential theory, which is inconsistent with extensive laboratory tests. To reasonably describe the noncoaxial effects on dilatancy, the energy dissipation of plastic flow is derived based on the property-dependent plastic potential theory for geomaterials and integrates the noncoaxiality, the potential theory links the plastic strain of granular materials with its fabric, and the noncoaxiality is naturally related to the mesoscopic properties of materials. When the fabric is isotropic, the dilatancy equation degenerates into the form of the critical state theory, and when the fabric is anisotropic, it naturally describes the effects of noncoaxiality. In the plane stress state, a comparison between a simple shear test and prediction of the dilatancy equation shows that the equation can reasonably describe the effect of noncoaxiality on dilatancy with the introduction of microscopic fabric parameters, and its physical significance is clear. This paper can provide a reference for the theoretical description of the macro and micro mechanical properties of geomaterials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call