Abstract

A model organic pigment (diketopyrrolopyrrole) is encapsulated by a silica coating in order to improve its photochemical stability. Unlike in previous works where single-layer silica coatings were used for similar purposes, we here propose creation of a multi-layer silica shell synthesized via in-situ sol-gel method, which should significantly improve the homogeneity and thus the protection ability of the coating. This is done by repeating the basic two-step process (pigment surface modification and silica encapsulation) several times, creating the final protective shell in a layer-by-layer fashion. The compositional and structural properties of the prepared coatings is studied using Fourier-transform infrared spectroscopy, differential thermal and thermogravimetric analysis, nitrogen adsorption measurements and transmission electron microscopy. Photochemical stability of non-encapsulated and encapsulated pigment particles is evaluated via the so-called fast-irradiation method. Various correlations between the essential coating properties, such as thickness, porosity, SiO2 content, and the corresponding photochemical stability of the samples are established and discussed in detail. As a whole, our results confirm the basic hypothesis, that multiple-layered silica shells show improved pigment protection ability in comparison to the single-layer coatings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.