Abstract

Electroreduction of CO2 to value-added low-carbon chemicals is a promising way for carbon neutrality and CO2 utilization. It was found that the diiron complex [(μ-bdt)Fe2(CO)6] (bdt = benzene-1,2-dithiolate) has high catalytic activity for electrocatalytic CO2 reduction. To further study the effect of the S-to-S bridge on the catalytic performances of diiron complexes for electrochemical CO2 reduction, four diiron complexes 1-4 with different rigid and conjugated S-to-S bridges were either selected or designed. The electrocatalytic studies showed that under optimal conditions, 2 with a 2,3-naphthalenedithiolato bridge exhibited the lowest catalytic onset potential (Eonset = -1.75 V vs Fc+/0), while 4 with a diphenyl-1,2-vinylidene bridge displayed the highest catalytic activity (TOFmax = 295 s-1), which is 1.5 times that of [(μ-bdt)Fe2(CO)6]. The controlled potential electrolysis experiments of 4 in 0.1 M MeOH/MeCN at -2.35 V vs Fc+/0 gave a total faradaic yield close to 100%, with selectivities of 77%, 9%, and 14% for HCOOH, CO, and H2, respectively. The mechanism for CO2 reduction was studied using density functional theory, IR spectroelectrochemistry, and electrochemical methods. The results indicate that modifying the structure of the S-to-S bridge is an effective strategy to improve the catalytic performance of diiron complexes for electrocatalytic CO2 reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call