Abstract

Hyperandrogenism is known to perturb ovarian physiology resulting in anovulatory conditions. In the ovary, androgens produced by theca-interstitial cells are converted to estrogens in granulosa cells under the influence of FSH and LH. In some of the target organs, including the ovary, androgens are also converted into their 5α reduced metabolites. In the present study, we examined the molecular mechanism by which dihydrotestosterone (DHT), a 5α reduced metabolite of testosterone, mediates the inhibition of granulosa cell proliferation, using a rat model. Immature female rats were primed with estradiol, followed by DHT administration for 2 d and granulosa cells were cultured in the presence or absence of forskolin. Granulosa cells from the DHT-treated rats showed reduced [3H]thymidine incorporation into DNA and reduced cell number in response to forskolin stimulation, compared with control. The decreased responsiveness of DHT-treated granulosa cells to forskolin was not due to increased apoptosis because the expression of cleaved caspase 3 remained the same in both control and DHT-exposed granulosa cells stimulated with forskolin. Forskolin treatment stimulated the expression of cyclin D2 mRNA in control granulosa cells, whereas DHT treatment abolished this response. In vitro DHT treatment of granulosa cells for 48 h resulted in a cell cycle arrest with 70% of cells at G1 phase and 26% at S phase, and control cells exhibited a distribution of 42% and 55% at G1 and S phase, respectively. In conclusion, the present study shows that DHT inhibits the granulosa cell proliferation through a decrease in cyclin D2 mRNA expression, which leads to cell cycle arrest at the G1 phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.